Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 293(20): 7754-7765, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29610278

RESUMO

Complex II (SdhABCD) is a membrane-bound component of mitochondrial and bacterial electron transport chains, as well as of the TCA cycle. In this capacity, it catalyzes the reversible oxidation of succinate. SdhABCD contains the SDHA protein harboring a covalently bound FAD redox center and the iron-sulfur protein SDHB, containing three distinct iron-sulfur centers. When assembly of this complex is compromised, the flavoprotein SDHA may accumulate in the mitochondrial matrix or bacterial cytoplasm. Whether the unassembled SDHA has any catalytic activity, for example in succinate oxidation, fumarate reduction, reactive oxygen species (ROS) generation, or other off-pathway reactions, is not known. Therefore, here we investigated whether unassembled Escherichia coli SdhA flavoprotein, its homolog fumarate reductase (FrdA), and the human SDHA protein have succinate oxidase or fumarate reductase activity and can produce ROS. Using recombinant expression in E. coli, we found that the free flavoproteins from these divergent biological sources have inherently low catalytic activity and generate little ROS. These results suggest that the iron-sulfur protein SDHB in complex II is necessary for robust catalytic activity. Our findings are consistent with those reported for single-subunit flavoprotein homologs that are not associated with iron-sulfur or heme partner proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Escherichia coli/enzimologia , Flavoproteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/química , Catálise , Cristalografia por Raios X , Complexo II de Transporte de Elétrons/química , Flavoproteínas/química , Humanos , Modelos Moleculares , Oxirredução , Conformação Proteica , Subunidades Proteicas
3.
J Biol Chem ; 291(6): 2904-16, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26644464

RESUMO

Escherichia coli harbors two highly conserved homologs of the essential mitochondrial respiratory complex II (succinate:ubiquinone oxidoreductase). Aerobically the bacterium synthesizes succinate:quinone reductase as part of its respiratory chain, whereas under microaerophilic conditions, the quinol:fumarate reductase can be utilized. All complex II enzymes harbor a covalently bound FAD co-factor that is essential for their ability to oxidize succinate. In eukaryotes and many bacteria, assembly of the covalent flavin linkage is facilitated by a small protein assembly factor, termed SdhE in E. coli. How SdhE assists with formation of the covalent flavin bond and how it binds the flavoprotein subunit of complex II remain unknown. Using photo-cross-linking, we report the interaction site between the flavoprotein of complex II and the SdhE assembly factor. These data indicate that SdhE binds to the flavoprotein between two independently folded domains and that this binding mode likely influences the interdomain orientation. In so doing, SdhE likely orients amino acid residues near the dicarboxylate and FAD binding site, which facilitates formation of the covalent flavin linkage. These studies identify how the conserved SdhE assembly factor and its homologs participate in complex II maturation.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Complexo II de Transporte de Elétrons/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/genética
4.
Biochemistry ; 53(10): 1637-46, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24559074

RESUMO

Single electron transfers have been examined in complex II (succinate:ubiquinone oxidoreductase) by the method of pulse radiolysis. Electrons are introduced into the enzyme initially at the [3Fe-4S] and ubiquinone sites followed by intramolecular equilibration with the b heme of the enzyme. To define thermodynamic and other controlling parameters for the pathways of electron transfer in complex II, site-directed variants were constructed and analyzed. Variants at SdhB-His207 and SdhB-Ile209 exhibit significantly perturbed electron transfer between the [3Fe-4S] cluster and ubiquinone. Analysis of the data using Marcus theory shows that the electronic coupling constants for wild-type and variant enzyme are all small, indicating that electron transfer occurs by diabatic tunneling. The presence of the ubiquinone is necessary for efficient electron transfer to the heme, which only slowly equilibrates with the [3Fe-4S] cluster in the absence of the quinone.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Heme/metabolismo , Transporte de Elétrons , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Heme/química , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Ubiquinona/química , Ubiquinona/metabolismo
5.
J Biol Chem ; 288(34): 24293-301, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836905

RESUMO

Respiratory processes often use quinone oxidoreduction to generate a transmembrane proton gradient, making the 2H(+)/2e(-) quinone chemistry important for ATP synthesis. There are a variety of quinones used as electron carriers between bioenergetic proteins, and some respiratory proteins can functionally interact with more than one quinone type. In the case of complex II homologs, which couple quinone chemistry to the interconversion of succinate and fumarate, the redox potentials of the biologically available ubiquinone and menaquinone aid in driving the chemical reaction in one direction. In the complex II homolog quinol:fumarate reductase, it has been demonstrated that menaquinol oxidation requires at least one proton shuttle, but many of the remaining mechanistic details of menaquinol oxidation are not fully understood, and little is known about ubiquinone reduction. In the current study, structural and computational studies suggest that the sequential removal of the two menaquinol protons may be accompanied by a rotation of the naphthoquinone ring to optimize the interaction with a second proton shuttling pathway. However, kinetic measurements of site-specific mutations of quinol:fumarate reductase variants show that ubiquinone reduction does not use the same pathway. Computational docking of ubiquinone followed by mutagenesis instead suggested redundant proton shuttles lining the ubiquinone-binding site or from direct transfer from solvent. These data show that the quinone-binding site provides an environment that allows multiple amino acid residues to participate in quinone oxidoreduction. This suggests that the quinone-binding site in complex II is inherently plastic and can robustly interact with different types of quinones.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Simulação de Acoplamento Molecular , Oxirredutases/química , Ubiquinona/química , Domínio Catalítico , Cinética , Relação Estrutura-Atividade
6.
Biochim Biophys Acta ; 1827(11-12): 1309-19, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22985600

RESUMO

The cytochrome bc1 complex (ubiquinone:cytochrome c oxidoreductase) is the central integral membrane protein in the mitochondrial respiratory chain as well as the electron-transfer chains of many respiratory and photosynthetic prokaryotes. Based on X-ray crystallographic studies of cytochrome bc1, a mechanism has been proposed in which the extrinsic domain of the iron-sulfur protein first binds to cytochrome b where it accepts an electron from ubiquinol in the Qo site, and then rotates by 57° to a position close to cytochrome c1 where it transfers an electron to cytochrome c1. This review describes the development of a ruthenium photooxidation technique to measure key electron transfer steps in cytochrome bc1, including rapid electron transfer from the iron-sulfur protein to cytochrome c1. It was discovered that this reaction is rate-limited by the rotational dynamics of the iron-sulfur protein rather than true electron transfer. A conformational linkage between the occupant of the Qo ubiquinol binding site and the rotational dynamics of the iron-sulfur protein was discovered which could play a role in the bifurcated oxidation of ubiquinol. A ruthenium photoexcitation method is also described for the measurement of electron transfer from cytochrome c1 to cytochrome c. This article is part of a Special Issue entitled: Respiratory Complex III and related bc complexes.


Assuntos
Citocromos c/química , Complexo III da Cadeia de Transporte de Elétrons/química , Compostos Organometálicos/química , Rutênio/química , Citocromos c/metabolismo , Citocromos c1/metabolismo , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Modelos Moleculares , Compostos Organometálicos/metabolismo , Oxirredução/efeitos da radiação , Conformação Proteica , Rutênio/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo
7.
Biochim Biophys Acta ; 1797(6-7): 747-54, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20100456

RESUMO

A b-type heme is conserved in membrane-bound complex II enzymes (SQR, succinate-ubiquinone reductase). The axial ligands for the low spin heme b in Escherichia coli complex II are SdhC His84 and SdhD His71. E. coli SdhD His71 is separated by 10 residues from SdhD Asp82 and Tyr83 which are essential for ubiquinone catalysis. The same His-10x-AspTyr motif dominates in homologous SdhD proteins, except for Saccharomyces cerevisiae where a tyrosine is at the axial position (Tyr-Cys-9x-AspTyr). Nevertheless, the yeast enzyme was suggested to contain a stoichiometric amount of heme, however, with the Cys ligand in the aforementioned motif acting as heme ligand. In this report, the role of Cys residues for heme coordination in the complex II family of enzymes is addressed. Cys was substituted to the SdhD-71 position and the yeast Tyr71Cys72 motif was also recreated. The Cys71 variant retained heme, although it was high spin, while the Tyr71Cys72 mutant lacked heme. Previously the presence of heme in S. cerevisiae was detected by a spectral peak in fumarate-oxidized, dithionite-reduced mitochondria. Here it is shown that this method must be used with caution. Comparison of bovine and yeast mitochondrial membranes shows that fumarate induced reoxidation of cytochromes in both SQR and the bc1 complex (ubiquinol-cytochrome c reductase). Thus, this report raises a concern about the presence of low spin heme b in S. cerevisiae complex II.


Assuntos
Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Bovinos , Primers do DNA/genética , Complexo II de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Heme/química , Técnicas In Vitro , Cinética , Ligantes , Mitocôndrias/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Espectrofotometria
8.
Biochemistry ; 46(50): 14610-8, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18027981

RESUMO

The first step in the catalytic cycle of cytochrome oxidase, the one-electron reduction of the fully oxidized enzyme, was investigated using a new photoactive binuclear ruthenium complex, [Ru(bipyrazine)2]2(quaterpyridine), (Ru2Z). The aim of the work was to examine differences in the redox kinetics resulting from pulsing the oxidase (i.e., fully reducing the enzyme followed by reoxidation) just prior to photoreduction. Recent reports indicate transient changes in the redox behavior of the metal centers upon pulsing. The new photoreductant has a large quantum yield, allowing the kinetics data to be acquired in a single flash. The net charge of +4 on Ru2Z allows it to bind electrostatically near CuA in subunit II of cytochrome oxidase. The photoexcited state Ru(II*) of Ru2Z is reduced to Ru(I) by the sacrificial electron donor aniline, and Ru(I) then reduces CuA with yields up to 60%. A stopped-flow-flash technique was used to form the pulsed state of cytochrome oxidase (the "OH" state) from several sources (bovine heart mitochondria, Rhodobacter sphaeroides, and Paracoccus denitrificans). Upon mixing the fully reduced anaerobic enzyme with oxygenated buffer containing Ru2Z, the oxidized OH state was formed within 5 ms. Ru2Z was then excited with a laser flash to inject one electron into CuA. Electron transfer from CuA --> heme a --> heme a3/CuB was monitored by optical spectroscopy, and the results were compared with the enzyme that had not been pulsed to the OH state. Pulsing had a significant effect in the case of the bovine oxidase, but this was not observed with the bacterial oxidases. Electron transfer from CuA to heme a occurred with a rate constant of 20,000 s-1 with the bovine cytochrome oxidase, regardless of whether the enzyme had been pulsed. However, electron transfer from heme a to the heme a3/CuB center in the pulsed form was 63% complete and occurred with biphasic kinetics with rate constants of 750 s-1 and 110 s-1 and relative amplitudes of 25% and 75%. In contrast, one-electron injection into the nonpulsed O form of the bovine oxidase was only 30% complete and occurred with monophasic kinetics with a rate constant of 90 s-1. This is the first indication of a difference between the fast form of the bovine oxidase and the pulsed OH form. No reduction of heme a3 is observed, indicating that CuB is the initial electron acceptor in the one-electron reduced pulsed bovine oxidase.


Assuntos
Detergentes/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Rutênio/química , Animais , Bovinos , Detergentes/metabolismo , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxirredução , Rutênio/metabolismo , Solubilidade
9.
Biochemistry ; 46(7): 1791-8, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17253777

RESUMO

Long-range movement of the Rieske iron-sulfur protein (ISP) between the cytochrome (cyt) b and cyt c1 redox centers plays a key role in electron transfer within the cyt bc1 complex. A series of 21 mutants in the cyt b ef loop of Rhodobacter sphaeroides cyt bc1 were prepared to examine the role of this loop in controlling the capture and release of the ISP from cyt b. Electron transfer in the cyt bc1 complex was studied using a ruthenium dimer to rapidly photo-oxidize cyt c1 within 1 mus and initiate the reaction. The rate constant for electron transfer from the Rieske iron-sulfur center [2Fe2S] to cyt c1 was k1 = 60 000 s-1. Famoxadone binding to the Qo site decreases k1 to 5400 s-1, indicating that a conformational change on the surface of cyt b decreases the rate of release of the ISP from cyt b. The mutation I292A on the surface of the ISP-binding crater decreased k1 to 4400 s-1, while the addition of famoxadone further decreased it to 3000 s-1. The mutation L286A at the tip of the ef loop decreased k1 to 33 000 s-1, but famoxadone binding caused no further decrease, suggesting that this mutation blocked the conformational change induced by famoxadone. Studies of all of the mutants provide further evidence that the ef loop plays an important role in regulating the domain movement of the ISP to facilitate productive electron transfer and prevent short-circuit reactions.


Assuntos
Citocromos b/química , Complexo III da Cadeia de Transporte de Elétrons/química , Proteínas Ferro-Enxofre/química , Citocromos b/genética , Citocromos b/efeitos da radiação , Transporte de Elétrons , Luz , Modelos Moleculares , Mutação , Compostos Organometálicos/química , Oxirredução , Rhodobacter sphaeroides/metabolismo , Rutênio
10.
Proc Natl Acad Sci U S A ; 101(29): 10544-7, 2004 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-15247424

RESUMO

The mechanism by which electron transfer is coupled to proton pumping in cytochrome c oxidase is a major unsolved problem in molecular bioenergetics. In this work it is shown that, at least under some conditions, proton release from the enzyme occurs before proton uptake upon electron transfer to the heme/Cu active site of the enzyme. This sequence is similar to that of proton release and uptake observed for the light-activated proton pump bacteriorhodopsin. In the case of cytochrome c oxidase, this observation means that both the ejected proton and the proton required for the chemistry at the enzyme active site must come from an internal proton pool.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Elétrons , Prótons , Animais , Sítios de Ligação , Bovinos , Cobre/química , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Heme/química , Heme/metabolismo , Luz , Oxirredução
11.
Biochemistry ; 42(10): 2816-24, 2003 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-12627947

RESUMO

A new ruthenium-cytochrome c derivative was designed to study electron transfer from cytochrome bc1 to cytochrome c (Cc). The single sulfhydryl on yeast H39C;C102T iso-1-Cc was labeled with Ru(2,2'-bipyrazine)2(4-bromomethyl-4'-methyl-2,2'-bipyridine) to form Ru(z)-39-Cc. The Ru(z)-39-Cc derivative has the same steady-state activity with yeast cytochrome bc1 as wild-type yeast iso-1-Cc, indicating that the ruthenium complex does not interfere in the binding interaction. Laser excitation of reduced Ru(z)-39-Cc results in electron transfer from heme c to the excited state of ruthenium with a rate constant of 1.5 x 10(6) x s(-1). The resulting Ru(I) is rapidly oxidized by atmospheric oxygen in the buffer. The yield of photooxidized heme c is 20% in a single flash. Flash photolysis of a 1:1 complex between reduced yeast cytochrome bc1 and Ru(z)-39-Cc at low ionic strength leads to rapid photooxidation of heme c, followed by intracomplex electron transfer from cytochrome c1 to heme c with a rate constant of 1.4 x 10(4) x s(-1). As the ionic strength is raised above 100 mM, the intracomplex phase disappears, and a new phase appears due to the bimolecular reaction between solution Ru-39-Cc and cytochrome bc1. The interaction of yeast Ru-39-Cc with yeast cytochrome bc1 is stronger than that of horse Ru-39-Cc with bovine cytochrome bc1, suggesting that nonpolar interactions are stronger in the yeast system.


Assuntos
Grupo dos Citocromos c/síntese química , Complexo III da Cadeia de Transporte de Elétrons/química , Heme/análogos & derivados , Rutênio/química , Proteínas de Saccharomyces cerevisiae/síntese química , Cristalografia por Raios X , Transporte de Elétrons , Heme/química , Cinética , Modelos Químicos , Compostos Organometálicos/síntese química , Concentração Osmolar , Fotólise , Proteínas de Saccharomyces cerevisiae/química
12.
J Biol Chem ; 278(13): 11419-26, 2003 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-12525495

RESUMO

Famoxadone is a new cytochrome bc(1) Q(o) site inhibitor that immobilizes the iron-sulfur protein (ISP) in the b conformation. The effects of famoxadone on electron transfer between the iron-sulfur center (2Fe-2S) and cyt c(1) were studied using a ruthenium dimer to photoinitiate the reaction. The rate constant for electron transfer in the forward direction from 2Fe-2S to cyt c(1) was found to be 16,000 s(-1) in bovine cyt bc(1). Binding famoxadone decreased this rate constant to 1,480 s(-1), consistent with a decrease in mobility of the ISP. Reverse electron transfer from cyt c(1) to 2Fe-2S was found to be biphasic in bovine cyt bc(1) with rate constants of 90,000 and 7,300 s(-1). In the presence of famoxadone, reverse electron transfer was monophasic with a rate constant of 1,420 s(-1). It appears that the rate constants for the release of the oxidized and reduced ISP from the b conformation are the same in the presence of famoxadone. The effects of famoxadone binding on electron transfer were also studied in a series of Rhodobacter sphaeroides cyt bc(1) mutants involving residues at the interface between the Rieske protein and cyt c(1) and/or cyt b.


Assuntos
Citocromos c1/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas Ferro-Enxofre/metabolismo , Oxazóis/farmacologia , Fotoquímica , Acrilatos/farmacologia , Animais , Bovinos , Cristalografia por Raios X , Citocromos c1/antagonistas & inibidores , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Cinética , Metacrilatos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Pirimidinas/farmacologia , Estrobilurinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...